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Abstract

Recently Miller and Sofer have presented a new nonparametric method for estimating the failure
rate of a software program. The method is based on the complete monotonicity property of the failure
rate function, and uses a regression approach to obtain estimates of the current software failure rate.
This paper extends this completely monotone software model and demonstrates how it can also provide
long-range predictions of future reliability growth. Preliminary testing indicates that the method is
competitive with parametric approaches, while being more robust.

1 Introduction

Suppose a program is executed for a length of time T. During this time, n bugs are detected and removed
when they manifest themselves as failures. The successive failures occur at times

Dty <t <...<t, <T. (1)

When bugs are corrected without introducing new faults, the program evolves into a more reliable program,
hence the term “reliability growth”. Given the past software data (1) we would like to make various statistical
inferences concerning the current and future reliability of the software. In particular we are interested in the
number of failures expected over some future horizon, the present failure rate, and the future failure rate
after an additional specified time of debugging.

Over the years, many competing models for software reliability growth have been developed. These models
include those by Duane(1964), Jelinski and Moranda(1972), Goel and Okumoto(1979), Littlewood(1981)
and Musa and Okumoto(1984). These are all parametric models. It is interesting to note that all the
above models have a common property: complete monotonicity of the failure rate function. Let N(¢) be
the (random) number of failures observed in [0,t], and let M(t) = E(N(t)) be the expected number of
failures. M(t) is known as the mean function. The intensity function of the point process {N(t),0 < t}is
r(t) = dM(t)/dt,0 < t. The function r(t) is also referred to as the failure rate of the process. A function r(-)
is completely monotone if and only if it has derivatives of all orders, and they alternate in sign as follows:

q
(—1)9‘1—325—020,tzo,qzo,l,z,.... (2)
Miller(1986) has shown that virtually all completely monotone functions can occur as intensity functions of
reliability growth point processes. Thus, a general approach to software reliability growth modelling should
include the entire class of completely monotone intenisities.
Miller and Sofer(1985) have previously introduced a nonparametric model for software reliability growth
which is based on complete monotonicity of the failure rate function. The method uses a regression approach
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to obtain estimates of the current software failure rate. Miller and Sofer(1986a) show that this method often
gives estimates which have a lower bias than those of certain (widely-used) nonparametric methods; using
Monte Carlo simulated failure data, these “completely monotone regression” estimates of current failure rate
are also shown to be more robust than the estimates based on parametric models. Chan{ 1986) has estimated
the distribution of time until next failure for real data using completely monotone regression estimates of
current reliability: he starts with a raw estimate which is an exponential distribution with the estimated
current failure rate and then “adapts” it to a more general distribution using the procedure of Littlewood
and Keiller(1984). Chan then evaluates these estimates using criteria of Abdel-Ghaly, Chan and Littlewood
(1986). This study shows that the completely monotone regression approach gives good estimates which are
more robust than estimates from parametric models.

This paper extends the completely monotone software model by developing a method for providing long-
range predictions of future reliability growth, based on the model. The paper derives upper and lower bounds
on extrapolations of the failure rate function and the mean function into the future. These are then utilized
to obtain estimates for the future software failure rate and the expected future number of failures.

2 Problem Formulation

Consider the failure data as in (1). Our goal is to find a completely monotone rate function and/or the
associated mean function which best fits the data. (We note here that the mean function does not strictly
satisfy the complete monotonicity property; rather, M (t) is a nonegative function whose derivative dM(t)/dt
is a completely monotone function). Our approach will be to obtain an initial raw estimate for the required
function from the data, and then to smooth it by fitting a completely monotonic function which is closest
to it in the least squares sense.

A natural raw estimate M(t) for the mean function is a piecewise linear function with breakpoints at
t;, i=1,...,n,such that M(t,') = i. Analytically, this function is given by

s it —t) /(b —t) i <t<tip;i=0,...,n-1
M(t)_{ n+68(t-ta)/(T—ta) tn <EST (3)

The second term in the final interval reflects the absence of a failure in the period (tn, T]. The choice of &
is somewhat arbitrary, with higher values tending tending to give more conservative estimates. In this work
we consider values of 0.0, 0.5 and 1.0 for §, however one can argue for and against any particular value.

In practice, it is necessary to discretize the problem of finding a completely monotone function to the
mathematically more tractable problem of finding a finite set of points along that function. The most
plausible and straightforward approach is to consider discrete time points which are equally spaced. We
thus divide the time interval [0, T] to k intervals of equal length 6 = T/k, and define s; =0 ,i=10,...,k.
Thus the sequence m; = M(s;) will be an initial estimator for the values of the mean function at the fixed
intervals s;. In general, however, this sequence will not satisfy the complete monotonicity assumptions of
the model, and will thus need some modification.

For the problem of estimating the rate function, one obtains an initial estimator from the slope of the
mean function estimator M(t). Specifically, the sequence

f’iz("h{—ﬁl’i—l)/o; i=1,...,k

will constitute a raw estimate of the failure rate function at the points s;.
When working with discrete, equally spaced time points, the analogue of a completely monotone function
is a completely monotone sequence. The sequence (r;,3=1,2,...) is completely monotone if

(—1FATr 20, j+1<4 §=0,1,... (4)

where A’ is the j-th order backward difference operator

Ao‘r,‘ =T Al'r‘,' =T —Ti—1, Aj'r',‘ = Aj_lrg - Aj—l‘r‘"__l, i>1 (5)
In general, the initial estimate (71, .. .,7) will not have the complete monotonicity property. Our goal will
be to find the “closest” completely monotone sequence (ry,.. ., i), and use it as an estimate of the sequence
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of failure rates at times s;. Using the criterion of weighted least squares, the problem is to find a vector r
which minimizes

k
D(r,#) = Zw,'(r,- —#)? (6)
=1

subject to the complete monotonicity constraints of (4), where w; is a set of prespecified weights.

In practice, numerical experience indicates that the effect of the very high order difference constraints on
the optimal solution is at most marginal; moreover, their presence leads to ill-conditioning of the optimization
problem. Consequently we relax the constraints in (4) and consider differences of at most d (not oo), with
d being typically 3 or 4. Similarly, it is unnecessary to constrain the sequence infinitely far into the future;
we shall restrict the number of future intervals to [, rather than oco. Finally, it should be noted that many of
the constraints in (4) are redundant, e.g., Ari_; <0 and A?r; > 0 imply that Ar; > 0. Eliminating those
redundant constraints, we finally obtain the reduced system of equations

(-1)%A%; 20, d+1<i<k+l @
(-1Y Alreq >0, 0<j<d-1,

and our problem is to minimize (6) subject to (7).

Notice that for the case d = 1, the problem is the well known “isotone regression” problem described
by Barlow et al. (1972) and addressed in the reliability growth context by Campbell and Ott (1979) , and
Nagel et al. (1984). If the last interfailure happens to come from the right tail of the interfailure time
distribution, #; will underestimate r(T'), and the monotone constraint on r will have no effect, thereby
leading to a negative bias. Imposing the additional constraint of convexity tends to pull this estimate
up. In most software reliability applications, a positively biased estimate of the failure rate is safer than
a negatively biased estimate; thus, higher order constraints seem to be desirable, and the generalisation of
isotone regression to comnpletely monotone regression an improvement.

Let us return to the problem of estimating the mean function. Recalling that its first order derivative is
a completely monotone function, and using the above, our problem is

k
min D(m, ™) = Z w;(m; — m;)?
i=1
subject to (—1)¥*!A%m; > 0, d<i<k+l (8)
(1Y ATmy 4 20, 0<j<d-1
my =n+6,

where my is defined as zero. If testing stopped at a failure, (i.e., tn = T), the value 6§ = 0 should be used.
In the case of truncated testing however, the value § = 0.5 is a more plausible choice. Using an argument
based on the assumption of a Poisson Process, a value § = 1 is also a plausible choice.

The optimization problems presented above are linearly constrained quadratic programming problems,
and algorithms for their solution are readily available in the literature. However, it can be shown (see Miller
and Sofer(1986b)) that our particular problem of least squares regression under higher order difference
constraints becomes increasingly ill-conditioned as the problem size grows. Thus, a numerically stable
algorithm should be employed for its solution. For a detailed description of a viable solution approach, see
Miller and Sofer (1986b).

An additional difficulty which arises, when attempting to include monotonicity requirements into the
future, is that the Hessian matrix, i.e., the matrix of the second order derivatives of the objective function is
singular, since the future predictions 7 and m; (wherei=k+1,...,k+ !) do not appear in the objective.
Moreover, the optimal future rate or mean estimators obtained by the least squares objective are not unique.
In section 3, we show how to overcome the problem of singularity, by reformulating the constraints on the
future rates (or mean function estimates) in terms of those of the past. Surprisingly, this approach also
provides bounds — lower and upper envelopes for these future estimates.
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3 Predictions into the Future

As mentioned previously, formulation (8) gives rise to some computational problems, when future pre-
dictions are requested, i.e., when { > 0. Algorithms for solving quadratic programming problems (see
McCormick(1983)) usually require that the Hessian matrix of the objecitve function be positive-definite.
However, the Hessian matrix of the objective for (6), ( i.e., diag (wy,..., ws)) is only positive semi-definite,
and does in fact have singularities. As a result, not only will we encounter numerical difficulties when trying
to solve the problem directly, but the optimal solution will not be unique. Indeed, any two solution vectors
where the first k components are equal, will yield exactly the same objective value. In other words, if the
completely monotone sequence (ry,...,7%) can be extrapolated ! time intervals into the future, in a way that
the resulting sequence (ry,...,T54+) is completely monotone, then all such possible extrapolations will have
the same least squares objective. In the following we show, that among all such extrapolations, there exist
a globally highest and a globally lowest extrapolation, and all other completely monotone extrapolations
into the future must lie in between the highest and lowest bounds. We thus have an envelope in which all
completely monotone extrapolations are restricted. In addition, we derive the conditions under which the
sequence (ry,...,Tx) can be extrapolated as a completely monotone sequence into the future.

Consider the completely monotone sequence of order d: R = (ry,...,7;). The sequence (rpy1,...,Teq1)
is defined to be a feasible completely monotone extrapolation of order d for R, if the sequence (ry,...,T¢4) i8
completely monotone up to order d, i.e., it satisfies (7). In addition, this extrapolation constitutes an upper
bound for all feasible extrapolations of order d, if any other such extrapolation, (Fi41,...,fr4:) satisfies
Fegi < Thyi fori=1,...,1. Similarly it constitutes a lower envelope if F¢ 4 > ri4 for all 4. In the following,
we derive conditions for the existence for such higher and lower envelopes for the completely monotone
extrapolations.

For the case d = 1 and d = 2, the sequence (ry,...,7:) can be extrapolated into the future by letting
Tesi = Tk, © = 1,...,1. This extrapolation is clearly the upper envelope for all completely monotone
extrapolations of order 1 and 2, and is always feasible. Also for d = 1, the extrapolation r¢,; = 0 is clearly a
lower envelope for all isotone extrapolations. The next proposition shows, that the lower envelope for feasible
extrapolations of order d = 2 is along a piecewise linear function which has slope Alr,, until it reaches zero,
after which it continues as a constant function zero. We define

_ [—rk/Alr;,]) if Al‘r‘k >0
”—{ z if Alr, =0 ®)

where [n] is the greatest integer not larger than n.

Proposition 1 Consider the constraints (7) with d = 2 and fized I > 0, and let (ry,...,7i) be a feasible
solution to (7) with I = 0. Then the exirapolation

[ retialn, i=1,...,p

”‘*"{0 _ i=p+1,...,1 (10)
is a lower envelope for all feasible extrapolations of order 2 to (ry,..., ™) .

Proof: The solution above is clearly monotone, and A%rpy; = 0fori=1,...,pandi=p+3,...,01. In

addition, A2rg4pr1 = —(r% + (p+ 1)Alre) and A?reipp2 = m + pAlry, which, by definition of p are both
nonnegative. Thus the constraints of (7) for d = 2 are satisfied. Note also, that for any other feasible
extrapolation (Fx41, ..., Fk+1) we have

A1Fk+j > Al’r‘k.

Thus, if 1 < p then
1
Trpts =Tk + ZAIﬁH.J' >re+ iAlTh = Tk i
i=1

It follows that (10) is a lower envelope as proposed.
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Proposition 2 Consider the constraints (7) with d = 3 and fized { > 0. A solution (r1,...,m¢) which
satisfies (7) with | = 0 can be eztrapolated to a vector (ry,...,Tx41) which satisfies (7) with 1 > 0 if and only

if
1. .
rk+jA1rk+§](]+1)A2rk20; g=1,...,L (11)
In addition, let
_ [—Al'f‘k/AaT‘k] if Azi‘k >0
=11 if A%ry =0

Then the upper envelope of all feasible extrapolations for d = 3 15 given by
e { e+ Ay + i+ DA, i=1,...,q
BT ey i=q+1,...,1L

Proof: First we note, that any feasible extrapolation satisfies

i
1
Thyi = 7‘k+ZA Th4j
i=1

i J
= e+t Z(Alf‘k + Z Alrgyn)
j=1 h=1

i g
= rp+idlre+ Z Z Alregn
ji=1h=1

1
< r+iAln + —2-i(i + 1A,

and the nonnegativity of ry,; implies that (11) must hold. Conversely, assume that (11) holds. Now since
{ri} is completely monotone of order 3, the sequence {—A!r;} is completely monotone with order d = 2.
Using Proposition 1 for the lowest feasible convex extrapolation for {—A!r;}, we obtain the upper envelope
for completely monotone extrapolations of (ry,...,7) of order 3.

Proposition 3 Consider the consiraints (7) withd = 3 and fized | > 0, and let (ry,...,73) be a solution fo
(7) with I = 0 satisfying (11). Let p be defined as in (9).
(a). If p > 1, then the exirapolation

Al ,
Tepi =T 1A, i=1,...,p

is a lower envelope for all feasible eztrapolations of order 3 to (r4,.. 5 TR)

(8). Ifp <1, let
u=min(l,1 + [-2r;/Alr]).

Then the eztrapolation

retullr .
"'k+'_{ re +iAlny + biGi 4+ 1) (FAobean)) =1,
: 2 B

12
0 izu+1,...,1 (12)

i3 a lower envelope for all feasible eztrapolations of order 3 to (ry,...,T¢) .

The proposition states that the lowest envelope is a linear function with slope Alry, provided that such
a linear function is feasible (nonnegative); otherwise it starts as a quadratic function with constant second

order difference
(2(1'1: + UAIT}C))
a=—| —m—m———=
u(u + 1)

which flattens to zero at ry,,, and from there continues as zero.
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Proof: If p > [ then (10) is a feasible extrapolation of order 3, thus (a) follows from Proposition 1.
If p < I then (10) will not satisfy the third order difference constraints. We now show that for this case, the
function of (12) is indeed a lower envelope for any feasible extrapolation. First assume that there exists a
feasible extrapolation g4y .. .7r4: for which A7, 41 < a. Then

Fer 4 (u— DAWeg + §(u - Dudifepr < met ullry + bu(u + 1)AMen
= 1 +ullr —(re + ulAlr) =0,

in contradiction to the conditions given by Proposition 2, for a feasible extrapolation for ry, ..., ¢, Fiy1. We
therefore conclude that any feasible extrapolation has a second order difference of at least a. If, on the other
hand, A*fp 41 > 6, then fiy1 > reyy. An inductive argument starting from ry,; completes the proof.

Proposition 4 Consider the constraints (7) with d = 4 and fized | > 0. A solution (ry,...,7s) which
satisfies (7) withl =0 can be eztrapolated to a vector (r1,...,Tet1) which satisfies (7) with 1 > 0 if and only

if

. 1., .
Alry + jA%r, + 536G+ 1)A3re <0, j=1,...,1 (13)
1
re + 1A + 51(1 + 1)A%y >0, (14)
2 . 1 1 . 2 .
mot S0 - DA+ I - DA 20, j= 100 (15)

If Alry 4+ 1A%, < 0 then the upper envelope of all such ezirapolations is given by
, 1., ,
Trpi =T + 1A, + 51,(1, + 1AM, i=1,...,p (16)

Otherwise, let
v = min(l,1 + [—2A17‘k/A2"'k])-

Then the upper envelope of all such eztrapolations 18 given by

N iAlry + Li(i + 1)A% + 3G+ 1)(E+2) (:1@—('%‘—&) i=1,...,v an
=
Tk+v ‘i:‘!)-{-l,...,l.

Proof: If the sequence {rx1} is a feasible extrapolation of order d = 4 then the sequence {—Alryy;} is
a feasible extrapolation of order d = 3. By Proposition 2, the conditions for existence of the latter are given
by (13). In addition, the upper envelope of all extrapolations for d = 4 is the sequence {rr+i} for which
{—A'rk4q} constitutes the lower envelope of all extrapolations of order d = 3. Applying Proposition 3 with
respect to the sequence {—A'ry,;} and integrating over this lower envelope yields the sequence of (16) and
(17). Note that by construction, the resulting sequence is nonincreasing, convex with nonpositive third order
difference. It remains to determine the conditions under which this sequence is nonnegative. First, we note
that condition (14) guarantees that (16) will be nonnegative. From Proposition 2 this is also a necessary
condition. Also conditions (15) guarantee that 74, is nonnegative for any possible value of v between 1 and
l. Since (17) represents a decreasing function which becomes constant for i > v, this guarantees that ri is
also nonnegative for any i. To show that conditions (15) are also necessary, define

P()= re + %(j — DAY + %j(j - 1)A%ry.
It is easy to see that P(j) decreases for j =1,...,v and increases for j = v,...,l. Suppose that (15) is
violated for some j. Let j be the smallest index to violate this condition. It follows that 7 < v and that
P(v) < 0. This in turns implies that re4y < 0, and thus no feasible extrapolation with d = 4 is feasible,
hence a contradiction. This completes the proof.

We shall now derive the envelopes for prediction for the mean function. Consider a sequence of order d:

M = (my,...,m;) which satisfies (8). The sequence (mi41,-- ., My ) is defined to be a feasible extrapola-
tion of order d for M, if the sequence (my, ..., ™y ;) satisfies (8). In addition, this extrapolation constitutes
6
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an upper bound for all feasible extrapolations of order d, if any other such extrapolation (k41 ., Meti)
satisfies 4y < Mpyi fori=1,..., I. Similarly it constitutes a lower envelope e > mpgifori=1...,1L

In the following, we derive conditions for the existence for such higher and lower envelopes for the feasible
extrapolations for M. We note that the derivative of the mean function is a completely monotone function.
Therefore, the lower and upper bounds for all feasible extrapolations of order d to my, ..., m; are obtained
by integrating respectively over the lower and upper bounds for all feasible extrapolations of order d — 1 to
Amy,. .., Amg.

Consequently, for the cased = 1, d =2and d = 3, the sequence (m;, . .., my) can always be extrapolated
into the future. The upper envelope for all feasible extrapolations of order up to 3 is the linear function

Mpyi = My + iAlm,.

For d = 1 and d = 2 the extrapolation mg; = m, is clearly a lower envelope for all feasible extrapolations.
The next proposition shows, that the lower envelope for feasible extrapolations of order d = 3 is along a
quadratic which tapers off to a constant function.

Proposition 5 Consider the constraints (8) with d = 3 and fized | > 0, and let (ry,...,7) be a feasible
solution to (8) with 1 =10. Let ' .

N [—Almh/Azmk] if A’mk >0
”—{z if A?m, =0 ° (18)

Then the eztrapolation

My = mk+iA1mk + %1(14— l)A’mk 1i=1,...,p
+ Mk4p t=p+1,.,1

is a lower envelope for all feasible extrapolations of order 3 to (my,...,m) -
Proof: Follows from Proposition 1.

Proposition 6 Consider the constraints (8) withd = 4 and fized 1 > 0. A solution (my,...,me) whick
satisfies (8) with | = 0 can be eztrapolated to a vector (ma,...,Meyi) which satisfies (8) with 1>0ifaend

only if

. 1.,. .
Almy + A my + 5](] + 1AM >0, j=1,...,1L (19)
Let
_ [~A¥me/A%my] if Adme >0
=11 if A3m, =0
and let

o= A'mg +qAm + Lq(g+ 1)A%m,
Then the upper envelope of all such eztrapolations is given by

L = mk+iA‘mk+%i(i+1)A7mk+éi(i+1)(i+2)A3mk i=1,...,q
ke metq + (- g : i=q+1,...,L

Proof: Follows from proposition 2.

Proposition 7 Consider the constraints (8) with d = 4 and fized | > 0, and let (my,...,my) be a solution
to (8) with I = 0 satisfying (19). Let p be defined as in (18).
(a). If p > I, then the eztrapolation

ME+i = Mk + iAlmk + %‘b(t + 1)A2mk, 1=1,...,p
is a lower envelope for all feasible eztrapolations of order § to (mq,...,mp).

(b). Ifp<, let
u = min(l,1+ [—2A'my [ A%my)).
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Then the ezirapolation

3 » 3 3 . 13 —_— 1 2 - —

s = my + iAtmg + %1(1, + 1)AYm,; + %z(z—% D(E+2) (—(——"—-———"-12 s :'E“rl‘)A ma))  f=1,...,u
Mi4u i=u+1,...,l

is o lower envelope for all feasible extrapolations of order § to (my,...,mx) .

The proposition states that the lowest envelope is either along a quadratic function, or it starts as a cubic
function which tapers off to a constant function. Its proof follows from Proposition 3.

4 Monte Carlo Study of Performance

To get an idea of how well future prediction envelopes estimate future behavior, we conducted a small Monte
Carlo simulation experiment. Our goal is to estimate the number of events over some finite horizon. As
in Miller and Sofer (1986a), we compare the completely monotone approach to some of the more popular
parametric models. A value of d = 4 is used for the completely monotone estimation (6 is taken as 1). Thus
the least squares problem (8) is solved for d = 4, with the constraints of (19) replacing the constraints of (8)
fori=k+1,...,k+ 1 Propositions 6 and 7 are applied to the resulting solution to obtain the upper and
lower envelopes for the future mean function. Finally, we need a point estimate of the expected number of
failures. We have arbitrarily decided to use the midpoint of the envelope.

Our choice of parameter models consists of three families of nonhomogeneous Poisson processes (NHPP).
The mean functions of the NHPP’s may have exponential, power or logarithmic form:

M.o(t) = v(1- e ™),
Mpow (t) = 7ta:
Myg(t) = 7vlog(Bt+1).

Those models are fit to data by using the method of maximum likelihood as described by Musa and Oku-
moto(1984). Furthermore, we define a fourth model which is a mixture of the above three. It is fit by
gelecting the best fitting (i.e., maximum likelihood) of the three models. This is the “best” parametric
model, among the three possibilities.

We draw our data from 16 different Poisson processes. Each process is observed over the interval [0,100]
and the future interval is [100,125], i.e., 256% into the future. We used k = 20 and ! = 5. The 16 cases
provide a variety of different growth patterns. Each case is replicated 400 times. The cases are summarized
in Table 1.

The performance of the parametric models and the completely monotone approach are summarized in
Tables 2, 3 and 4. Table 2 shows the average prediction made by each model for the 400 replicates of each
case. Table 3 shows the average percentage error, or bias. Table 4 shows the root-mean-square percentage
error for the 400 estimates made by each model for the 16 test cases. We note that when the data comes
from a certain model, then that particular model gives the best predictions. However in most cases, the
completely monotone comes in as “second best”, i.e., it gives better predictions than those given by using
the incorrect parametric model. In practice, of course, it is highly unlikely that a parametric model used
for prediction will indeed be the “correct” model from which the failure data was generated. In Table 5 the
performance of the prediction envelopes is summarized. Note that the majority of the envelopes have zero
width, i.e., the upper envelope is identical to the lower envelope.

In conclusion, we stress that some components in the formulation of the completely monotone model were
chosen arbitrarily. Other definitions of the raw estimates and other objective functions will give different,
and possibly better estimates. Nevertheless, the completely monotone approach shows a robustness not
exhibited by the individual parametric models. The procedure has quite low bias, which is less than that
caused by using the incorrect parametric models for prediction. Comparisons to the “best” parametric model
are unfair because the Monte Carlo data is, in effect, drawn from that model. We could use other models
to generate data for which this “hest” parametric model is inferior to the more robust completely monotone
approach.
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Model  Type of Parameter  M(125) -

Number NHPP M(100)
1 Homogeneous 10.00
2 Power a =.749 7.28
3 Power a =.557 5.29
4 Power a =.410 3.83
5 Power a =.296 2.73
6 Power a =.208 1.90
7 Logarithmic 8 =.0124 6.42
8 Logarithmic B =.0429 4.43
9 Logarithmic g =.131 3.16
10 Logarithmic [ =.461 2.27
11 Logarithmic B =2.43 1.62
12 Exponential n =.00808 5.88
13 Exponential n =.0167 3.17
14 Exponential =.0265 1.47
15 Exponential n =.0385 0.54
16 Exponential n =.0550 0.12

Table 1: Data Models (Poisson Processes). All models are scaled so that E(N(100)) = M(100) = 40.

Model  True EXP LOG POW BEST CM.

Number Mean Mdpt.
1 10.00 8.67 8.86 9.33 8.73 9.52
2 728 562 6.11 7.34 6.38 7.72
3 5.29 2.97 3.73 5.36 4.70 5.88
4 383 1.36 223 3.88 3.62 4.50
5 2.73 051 131  2.76 2.65 3.40
6 1.90 0.15 0.75 1.92 1.87 2.52
7 642 6.10 6.76 8.20 6.48 7.44
8 4,43 341 468 6.63 4.19 5.38
9 3.16 1.64 3.29 5.27 2.89 4.06
10 2.27 0.64 2.35 4.11 2.28 3.08

11 1.62 0.18 1.66 3.10 1.71 2.30
12 5.88 5.86 6.57 8.09 6.26 7.31
13 3.17 3.21 4.70 6.72 3.67 4.73
14 1.47 1.51 3.62 5.63 1.91 2.84
15 0.54 0.57 2.95 4.77 0.75 1.60
16 0.12 0.14 248 4.07 0.21 0.88

Table 2: Average Predictions of Mean Number over Future Horizon



Model Fitted Model

Number | EXP LOG POW BEST CM
1 -13. -11. -T. -13. -5.
2 -23. -16. +1. -12. +6.
3 -44, -30. +1. -11. +11.
4 -65. -42. +1. -6. +17.
5 -81. -52. +1. -3. +24.
6 -92. -61. +1. -2. +33.
7 -5, +5. +28. +1. +16.
8 -23. +5. +50. -6. +21.
9 -48. +4. +67. -8, +29.
10 =72, +3. +81. 0. +36.
11 -89. +3. +98. +6. +42.
12 0. +12. +32. +6. +24.
13 +1. +48. +112. +16. +49.
14 +3. +146. +282. +30. +93.
15 +86. +448. +T788. +40. +199.
16 +14. +1921. +3216. +74. +615.

Table 3: % Prediction Error (Bias) for Mean Future Number

Model Fitted Model

Number [ EXP LOG POW BEST CM
1 26. 24. 29, 24.  29.

2 39, 32. 23. 31.  30.

3 53. 39. 23. 32. 39,

4 69. 46. 23. 29. 48,

5 83. 55. 23, 26.  60.

6 93, 62. 23. 26. 73.

7 37. 32. 39, 36.  38.

8 44, 31. 59. 43,  50.

9 57. 26. 75. 47. 62

10 75. 23. 89. 40. 74,
11 90. 21. 99, 27.  85.
12 38. 34. 47.  37.  45.
13 45. 61.  120. 53.  80.
14 54. 155,  292. 82. 142
15 67. 461.  805. 134. 278.
16 95. 1956. 3268. 336. 776.

Table 4: % Root Mean Square Error for Mean Future Number Prediction
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Data  Fraction Fraction Av.width True Mean Coverage
Model Zero Non-zero Non-zero Fraction Fraction Fraction
Number  Width Width Envelope Overestimate Correct Underestimate
1 715 .285 0.348 .408 .067 .525
2 515 .485" 0.816 .575 .105 .320
3 .503 .497 0.966 .542 .182 275
4 .548 .452 0.759 .550 167 .283
5 570 .430 0.588 .585 .160 .255
6 .600 .400 0.414 595 .155 .250
7 .420 .580 1.116 610 .193 197
8 417 583 1.334 .515 .283 .202
9 .505 .495 0.897 .560 .243 197
10 573 427 0.616 .600 193 .208
i1 573 427 0.441 .605 .182 213
12 .363 637 1.228 .648 .190 .162
13 .305 .695 1.828 .520 400 .080
14 321 679 1.300 574 .333 .093
15 .503 .497 0.656 .652 .243 .105
16 .698 .302 0.209 925 .063 013
Table 5:  Performance of Completely Monotone Prediction Windows
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